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Contexte            
Les laits crus présentent une diversité et une richesse microbienne importante, influencée par le 

microbiote des trayons des animaux (Yan et al, 2022). Ce dernier est en interaction étroite avec le microbiote 

de l’environnement, (air, litière, bouse), et peut présenter certaines similitudes avec ces différents réservoirs 

(Marchandise, 2019). La sécurité sanitaire des laits crus est en enjeu majeur, avec le besoin de conserver une 

flore suffisamment abondante et riche pour maintenir une compétition suffisante envers les flores 

indésirables et pathogènes. De plus, certaines espèces du lait cru, même minoritaires dans les fromages, ont 

été associées à des qualités organoleptiques des fromages intéressantes ainsi qu’à des effets bénéfiques sur 

pour la santé humaine (Bettera et al, 2023; Montel et al, 2014), d’autres ont même des effets anti Listeria et 

Salmonella in vitro (Chanos & Williams 2011; Aljasir & D’amico, 2023).  Le lien indirect entre les laits crus et 

les litières est donc important, au regard du transfert probable de certaines bactéries indésirables ou 

pathogènes dans les laits.  

Les filières fromagères des Savoie se sont donc investies dans l’étude des microbiotes des litières de 

différents systèmes (un système correspondant à un type de logement pour vaches laitières avec une nature 

de litière donnée), afin de comprendre leur composition bactérienne, leur structuration et leur dynamique 

temporelle. Le but de cette étude est avant tout d’apprécier davantage l’intérêt sanitaire et qualitatif des 

différents systèmes investigués, et de comprendre comment leurs particularités influencent certaines 

espèces et de quelle manière elles le font.  

Pour répondre à ces questions, l’action 1 su projet LITIERES a pour objectif de caractériser les écosystèmes 

microbiens des litières de différents systèmes (logements + nature de la litière) par des analyses 

métagénétique et métagénomique. 
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Matériel et méthodes  
 

1. Plan d’expérience  

 

Modalités, répétitions, réplicats, choix des fermes  

Dans cette étude, 25 fermes ont été suivies, avec 5 fermes par système :  

● logettes paillées  

● logettes sciure 

● logette avec tapis  

● aires paillées  

● entraves paillées  

 

 

Les exploitations laitières ont été choisies selon plusieurs critères :  

• l’exploitation laitière est située en Savoie ou Haute-Savoie   

• le lait est destiné à la fabrication de fromage au lait cru (IGP Savoie, AOP, fermier)  

• l’ensilage n’est pas utilisé dans la ration des vaches 

 

 

 
 

Figure 1 : Localisation des différentes fermes investiguées durant l'essai. 

 

Dans chaque ferme, 3 répétitions dans le temps furent réalisées à plus ou moins un mois d’intervalle. 

Les échantillons relatifs au metabarcoding furent réalisés comme suit : l’opérateur plaçait une 

pédichiffonnette sur une botte lestée et réalisait 40 pas le long d’un transect au sein de l’exploitation. Cette 

opération était réalisée 3 fois pour l’obtention des 3 réplicats biologiques au sein de chaque répétition. Les 

transects étaient définis de manière à ne pas échantillonner les zones bousées, ni les couloirs de stabulation.  
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Les échantillons relatifs aux analyses pasteuriennes étaient réalisés de la même façon avec un seul transect 

pour les analyses suivantes : Flore mésophile aérobie revivifiable (FMAR), flore lactique mésophile, flore 

d’affinage, batéries à gram négatif (G-), levures, moisissures, coliformes fécaux et bactéries butyriques. Un 

autre transect était réalisé dans le but de rechercher et dénombrer les Listeria spp, Listeria monocytogenes 

et Salmonella. 500 g de litière étaient récupérés au niveau des transects pour mesurer in fine le pourcentage 

de matière sèche et le pH de la litière. Ce dernier échantillon était réalisé en prélevant 10 poignées espacées 

régulièrement à la surface des litières. 

20 poignées réparties entre la surface et la profondeur du stock furent prélevées et mises en sac, puis à partir 

de cet échantillon composite 50 g étaient dédiés aux analyses pasteuriennes citées ci-dessus (1 échantillon), 

2* 50 g à la recherche de pathogènes (2 échantillons) et 500 g dédiés aux mesures de pourcentage de matière 

sèche et de pH (1 échantillon).  

Les échantillons de litière n’ont pas été réalisés concernant le système logette avec tapis, pour lequel seuls 

les échantillons pour métabarcoding, pasteurienne et détection de pathogènes ont pu être envoyés à partir 

des pédichiffonnettes.  

Un questionnaire sur les différentes pratiques des agriculteurs fut également réalisé afin de recueillir les 

pratiques de gestion des litières, l’état subjectif du troupeau, les cas sanitaires. (Annexe1)  

 

Des mesures environnementales furent également réalisées. Une sonde thermo-hygromètre (PCE-HT 72) fut 

utilisée pour obtenir 3 mesures de température et d’humidité relative de l’air à l’intérieur du bâtiment 

comme à l’extérieur.  

La température du stock fut relevée en 6 point du stock à 25 cm de profondeur avec une sonde à fourrage 

(HFM II Foin et Paille)  

 

2. Analyses  

 

 a.Metabarcoding 16S région V3-V4 

 

La préparation des culots cellulaire fut réalisée par ACTALIA avec un protocole fourni par le l’unité 

mixte de recherche sur le fromage (UMRF). L’ADN des suspensions obtenues fut ensuite extrait par l’UMRF 

(FastDNA Spin Kit for Soil, MP Biomedicals—Illkirch—France). Les amplifications par amplification en chaine 

par polymérase (PCR) ont été réalisées suivant le protocole présenté dans Verdier-Metz et al (2023). Les 

amplicons ont été séquencés au GenoToul avec la technologie Miseq Illumina, pour une obtention de 250 pb 

(région V3-V4). 

 

b. Analyses pasteuriennes 

 

Les dénombrements des différents groupes microbiens ont été réalisés par ACTALIA suivant les méthodes 

indiquées ci-dessous (Tableau 1)  
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Tableau 1 : Milieux de cultures et références utilisés par ACTALIA pour les dénombrements microbiens. 

 

 

 

 

 

 

 

 

 

 

 

 

c. Analyses physicochimiques : matière sèche et pH   

 

Ces mesures ont été réalisées au VIDAL. Le pourcentage de matière sèche fut obtenu après passage à 

l’étude à 80°C pendant 48 h. Le pH fut mesuré à partir du jus de l’échantillon composite de litière.  

 

3. Bioinformatique et biostatistiques  

 

a. Bioinformatique : 

 

Les qualités des séquences ont été vérifiées pour tous les échantillons avec fastp (Chen et al, 2023). Les 

étapes de denoising et dereplication des séquences furent réalisées avec Frogs (version 4.1.0) et Vsearch 

(version 2.17.0) pour le merging (Bernard et al, 2021; Escudié et al, 2018; Rognes et al, 2016). Le clustering 

des amplicons fut ensuite réalisé avec Swarm (version 3.0.0) (Mahé et al, 2021)et une distance d'agrégation 

de 1 suivie de la suppression des chimères avec Vsearch. Un filtre sur l’abondance fut ensuite appliqué sur 

les clusters, suivant Bokulich et al (2013). L’affiliation taxonomique fut réalisée avec BLAST et RDP, suivant 

deux bases de références, DairyDB (v.2.0) et EzBioCloud (52018) afin d’évaluer la base la plus pertinente au 

regard de la question biologique.  

 

b. Biostatistique :  

 

Les comparaisons multigroupes d’une seule variable ont été réalisées suivant que les conditions soient 

paramétriques ou non. La plupart du temps, les conditions n’étant pas paramétriques, un test de Kruskall-

Wallis a été réalisé avec l’ajustement de Bonferroni, suivi d’un test de Dunn en post-hoc. Les comparaisons 

Micro-organismes visés   Milieu de culture   

FMAR   NF en ISO 4833 

Bactéries lactiques mésophiles  MRS + acide alidixique + natamycime  

Bactéries d’affinages  CRBM (Denis et al, 2001) 

Les levures  OGA  

Les moisissures  OGA  

Bactéries à Gram négative  PCA lait + cristal violet + vancomycine  

Coliformes fécaux  Choisis par ACTALIA  

Bactéries butyriques  NF V 08-060 
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d'occurrence de Listeria spp et mono et les comparaisons des scores de propreté ont été réalisées suivant le 

test du Chi2. 

Les ordinations ont été réalisées sur une matrice de distance de Bray-Curtis, et représentées à condition que 

l’algorithme converge et que le stress soit considéré suffisamment bon (<0.2). Les tests associés à ces 

ordinations sont des PERMANOVA réalisées avec 1000 permutations. Le test de variance multigroupes a été 

réalisé à partir d’une matrice de distance de Bray-Curtis entre échantillons, pour tester la dispersion 

relativement au centroïde. Une ANOVA a ensuite été réalisée suivie d’un test de Tukey-HSD dans le cas d’une 

significativité, pour comparer les variances par paires.  

Les réseaux d’interactions (mutualisme, compétition) furent réalisés à partir du package ggclusternet (Tao et 

al, 2022), avec un r.threshold de 0.5 et un p.threshold de 0.05. Les corrélations entre espèces furent vérifiées 

avec le package SECOM (Lin et al, 2022). 

 

4.  Classification des taxons en grands groupes fonctionnels  

 

La classification en grands groupes fonctionnels des espèces du jeu de données fut réalisée à partir 

de différentes sources bibliographiques. Les fonctions précises étant souches dépendantes, il fut décidé de 

ne conserver que des fonctions représentées à l’échelle de l’espèce. Le groupe “utiles à la fromagerie” 

s’appuie sur toutes les espèces documentées impliquées directement dans la transformation fromagère, de 

manière neutre ou positive si l’espère montre un intérêt particulier pour le produit fini au niveau des qualités 

organoleptiques (texture, goût, arôme, couleur, odeur). Le groupe “indésirable” s’appuie sur les espèces 

provoquant des défauts la majorité du temps toute technologie fromagère confondue, les cas particuliers de 

certaines technologies ne fut pas pris en compte pour cette classification.  La majorité des espèces de cette 

classification sont psychrophiles. Outre les nombreuses sources bibliographiques, l’inventaire IDF fut 

largement exploité pour la classification des espèces “utiles à la fromagerie” (Bourdichon et al, 2017) ainsi 

que Florilège (Falentin et al,  2017). Les bases de données internationales comme Bacdive ont permis d’avoir 

de nombreuses informations à l’échelle de l’espèce. Une base de données vétérinaire (Warde, 2002) a permis 

de détecter les espèces potentiellement pathogènes pour les animaux et l’humain.  
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Résultats:  

 

Partie pasteurienne :  

 

Les dénombrements des groupes microbiens (Fig.2) ont permis de montrer que les abondances des bactéries 

d’affinages n’étaient pas significativement différentes selon les systèmes. Les niveaux en entraves paillées 

étaient toutefois plus importants que ceux en logette sciure (8.37log10 contre 8.10, p-value < 0.05). Les 

microflores lactiques mésophiles montraient quant à elles des niveaux significativement plus importants en 

entraves paillées avec une moyenne de 6.78log10, les niveaux minimums étaient atteints dans les aires 

paillées avec une moyenne de 5.23. Les niveaux en levures, moisissures et bactéries à G- étaient 

significativement plus faibles en logettes tapis (p-value < 0.05). Les aires paillées montraient les niveaux les 

plus importants en bactéries à G- et coliformes fécaux. Les bactéries butyriques ne montraient pas de 

différences majeures entre les systèmes, mais la moyenne la plus élevée était atteinte en aires paillées.  

Fig.2 Abondance des UFC/mL des différents groupes microbiens en fonction des systèmes 
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Description des systèmes :  

Les litières jugées propres (Fig.3) sont plus souvent représentées en logettes paillées (p-value < 0.001***). 
Les aires paillées sont celles qui présentent le plus de litières jugées sales (p-value < 0.01**) 

 

 
Figure 3 : Occurrence des systèmes en fonction des catégories de propreté des litières “sales”, 

“intermédiaires” et “propre” 

 

 

Également les systèmes en aires paillées montrent des litières plus âgées (Fig.4) que les autres systèmes (p-

value = 3.86e-8) 
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Figure 4 : Age des litières en jours, en fonction des différents systèmes  

 

Partie métabarcoding : 

  

Richesse et diversité selon les systèmes : 

 

 Les données de métabarcoding ont permis de montrer que la richesse bactérienne en variants de 

séquence d’amplicons (ASV) (Fig.5.a) et la diversité de Shannon étaient significativement plus faibles en 

aires paillées (p-value <0.05). Cependant, la différence de diversité de Shannon entre les aires paillées et les 

entraves paillées n’est pas importante malgré la significativité (Fig.5.b)  

 

Figure 5: a) Richesse bactérienne en ASV en fonction des différents systèmes. b)Diversité bactérienne de 

Shannon en fonction des différents systèmes. 
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Effets fermes, litière et logement sur les microbiotes bactériens : 

 

Tout échantillon confondus, l’effet exploitation calculé est le plus important (Fig.6.a), avec un R2 de 0.60 (p-

value = 0.001***), suivis de l’effet logement (Fig.6.b) (R2 = 0.21, p-value = 0.001***), puis de l’effet litière 

(Fig.6.c) à proprement parlé (R2 = 0.05, p-value = 0.001***). 

Figure 6 a) NMDS des échantillons colorés par numéro d’exploitation. b) NMDS des échantillons colorés par 

type de logement. c) NMDS des échantillons colorés par type de litière. Les ordinations sont réalisées sur des 

matrices de distances de Bray-Curtis. Les ellipses assument 80% d'une distribution t. 

 

 Contrairement à ce qui était imaginé, l’effet de la litière sur le microbiote bactérien est bien plus 

faible que celui du logement utilisé. On peut émettre l’hypothèse que dernière la variable du logement se 

trouve d’autres facteurs confondants, comme la gestion des litières, la fréquence de renouvellement, 

l’utilisation ou pas d’un asséchant, l’humidité relative et le pH.. L’analyse de la variance des groupes en 

fonction du logement a permis de voir que les aires présentaient une variance intra-groupe plus importante 

que celle des entraves (p-value = 0.003), et plus importante que celle du groupe Logettes (p-value = 0.01).  

Les variances des groupes définis par les litières ne peuvent pas être comparées directement, du fait de la 

sur-représentation des litières en paille dans le jeu de données.  

 

Certaines fermes montrent des variances plus élevées que d’autres (E27, E11), impliquant que la variation 

dans le temps des microbiotes de ces fermes est plus importante. D’autres au contraire sont plus stables en 

fonction des répétitions dans le temps (E1, E12). 
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Quelle composition des systèmes en espèces majoritaires ? :  

 

L’étude du core-microbiome permet d’observer que Sporobacter termitidis est la bactérie la plus souvent 

observée dans les échantillons. En effet, elle est détectée dans 80% des échantillons à minimum 7% 

d’abondance relative. Les espèces les plus couvent présentes sont des bactéries intestinales strictement 

anaérobies (Fig.7) 

Figure 8 Représentation du core microbiome des échantillons de litières de la globalité du jeu de données. 

L’abondance relative maximale par échantillon sélectionnée pour cette analyse est de 7%. 

 

11 espèces majoritaires permettent de conserver jusqu’à 50% de l’abondance relative des échantillons, tous 

échantillons confondus. Ces espèces sont les suivantes : Pseudomonas caeni, Psychrobacter phenylpyruvicus, 

Sporobacter termitidis, Ruminococcaceae, Intestinabcter bartlettii, une Christensenellaceae du groupe R7; 

Facklamia tabacinasalis, Aerococcus viridans, Jeotgalicoccus psychrophilus, Bacillus cecembensis, 

Phocaeicola.sp 

Pseudomonas caeni et Bacillus cecembensis sont plus abondants dans les aires paillées, Psychrobacter 

phenylpyruvicus est plus observé en logettes sciures (Fig.8). Ce ne sont toutefois pas les espèces réellement 

structurantes de ces systèmes.  
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Figure8 Représentation des abondances relatives des 11 espèces majoritaires pouvant atteindre 50% de la 

composition des échantillons. Représentation par système. 

Les classes bactériennes “utiles” directement à la fromagerie et “indésirables pour la transformation” : 

 

Il est important de souligner ici que seules les bactéries utiles directement à la fromagerie sont représentées 

(Fig.10.a), et que les bactéries corrélées positivement avec ces dernières ne le sont pas. Les facilitateurs 

apparaîtront dans un prochain article. Les facilitateurs sont également à prendre en compte pour interpréter 

correctement un système complexe, ainsi que les bactéries compétitrices des espèces utiles en fromagerie. 

Le même raisonnement s’applique concernant les bactéries indésirables à la fromagerie (Fig.9.b) 

Figure 9 a) Abondances relatives des espèces utiles directement à la fromagerie par système. b) 

Abondances relatives des espèces indésirables pour la fromagerie. 
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Les bactéries Corynebacterium callunae et C.casei, peuvent représenter jusqu’à 12% des bactéries utiles 

directement à la fromagerie (Fig.10). A la surface des aires paillées, Arthrobacter arilaitensis est l’espèce la 

plus abondante. En entrave paillée, une diversité importante de Corynebacterium est remarquée.  

 

Figure 10 Abondances relatives des espèces utiles directement à la fromagerie, colorées par nom d’espèce, 

et représentées par systèmes. 

 

Les effets des paramètres abiotiques :  

Les logettes paillées montrent des patterns bien différents des autres concernant le pH du substrat (Fig.11.a), 

son pourcentage en matière sèche (Fig.11.b), et la température de l’air (Fig.11.d). Les logettes sciures 

montrent des pourcentages d’humidité dans l’air et des pH plus faibles que les autres systèmes (Fig.11.a. et 

c). On observe pour chaque paramètre une étendue relativement importante. Il est intéressant de voir que 

les pH sont plutôt alcalins, avec un maximum de 8.97 en entraves paillées.  

Également, une corrélation négative entre la température de l’air et l’humidité de l’air fut détectée (-0.33, p-

value = 8.86e-7) ainsi qu’une corrélation négative entre le pH et le pourcentage de matière sèche (rho = -

0.49, p-value = 1.08e-9)  
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Figure 11  a) Courbe de densité du pH colorée par système. b) Courbe de densité de la matière sèche colorée 

par système. c) Courbe de densité du pourcentage d’humidité de l’air colorée par système. d) Courbe de 

densité de la température de l’air colorée par système.  

A travers ces résultats, on comprend un effet exploitation important. Pour comprendre l’effet des 

paramètres abiotiques sur les microbiotes, il est donc important de les réaliser par système en incluant en 

première variable le numéro d’exploitation, et de prendre en compte également les interactions entre les 

facteurs abiotiques et les exploitations quand une dépendance entre les deux existe.  

En logettes tapis, les exploitations ont un poids de 45% sur le microbiote (p-value = 0.0009), l’humidité 

relative de l’air influe plus que la température de l’air (R2 = 4.6%, p-value = 0.0009, contre R2 = 1.2, NS). Ce 

système montre une forte dépendance des températures aux exploitations dans lesquelles elles ont été 

mesurées.  

En logettes paillées, les exploitations ont un poids de 37.4% (p-value = 0.0009), suivis d’un poids pH de 4.7% 

(p-value = 0.0049), d’un poids matière sèche (R2 = 4.4%, p-value = 0.0009), puis humidité de l’air (R2 = 4.2%, 

p-value = 0.0019), et enfin d’un poids température de l’air (R2 = 3.9%, p-value = 0.008). On observe dans ce 

système une dépendance forte de la température et du pH aux exploitations.  

Les logettes sciures montrent des températures de l’air moins dépendantes aux exploitations que les deux 

autres cités précédemment. Le poids des exploitations est toujours le plus important (R2 = 62%, p-value = 
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0.0009). Viennent ensuite dans l’ordre croissant : la température de l’air (R2 = 3.5%, p-value = 0.01), puis 

l’humidité de l’air (R2 = 2.4, p-value = 0.04). Aucun effet pH ni Matière sèche n’est détecté à l’échelle du 

microbiote, ce qui ne signifie pas qu’aucune espèce ou ASV n’est liée à ces paramètres.  

En aires paillées, les températures sont fortement dépendantes des exploitations. Ces dernières jouent 

majoritairement sur la variance des microbiotes (R2 = 54%, p-value = 0.0009). Un effet important de 

l’humidité de l’air est détecté (R2 = 5.6, p-value = 0.0009), puis la matière sèche (R2 = 4.1%, p-value = 0.0009), 

la température de l’air (R2 = 3%, p-value = 0.0009) et finalement le pH avec un effet plus faible, dû à sa 

variance moins importante dans ce système (R2 = 1.9%, p-value = 0.002). 

En entraves paillées on n’observe pas d’effet de l’humidité de l’air et l’effet de la température ne se mesure 

qu’à travers son interaction avec les exploitations (R2 = 4.4%, p-value  = 0.015). Le poids des exploitations est 

toujours le plus important (R2 = 61.8%, p-value = 0.0009). Dans l’ordre décroissant on retrouve ensuite la 

matière sèche (R2 = 4.2, p-value = 0.004), puis le pH (R2 = 2.6%, p-value = 0.03) 

 

Les réseaux d’interactions (mutualisme/compétition) par système en fonction des facteurs abiotiques :  

Plusieurs réseaux ont pu être étudiés, nous présenterons un exemple ici du système logette sciure, 

en fonction des pH catégorisés “hauts” et “bas” selon leur écart à la médiane.  

Les réseaux des sciures avec un pH bas (Fig.12.a) montrent beaucoup moins de relations de compétition que 

ceux des sciures en pH hauts (Fig.12.b) (14.4% contre 34.3%). On peut donc estimer que la compétition est 

plus forte en logette sciure quand les pH sont supérieurs à 7.92. La force des corrélations entre les taxons est 

impactée par le pH (closeness = 0.43 contre 0.3; p-value = 2.2e-16) avec des valeurs plus importantes quand 

le pH est supérieur à 7.92. Il y a également plus d’espèces keystones (structurantes) dans les réseaux à pH 

hauts (degree centrality = 45.88 contre 11.33; p-value = 2.2e-16) 

Figure 12 a) Réseau d’interaction bactérien des logettes sciures avec un pH < 7.92. b) Réseau d’interaction 

bactérien des logettes sciures avec un pH > 7.92. r.threshold limité à 0.5, p.threshold limité à 0.05 
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Une recherche plus poussée des relations avec les espèces d’intérêt fromager nous apprend que ces espèces 

d’intérêt ont plus de relations positives donc de mutualisme que les espèces potentiellement pathogènes 

dans les deux types de réseaux, mais le réseau des pH plus hauts montre une richesse en ASV plus importante, 

impliquant théoriquement, une richesse fonctionnelle plus importante également. Dans ce réseau, on a 

également des abondances plus élevées d’espèces d’intérêts et de leurs mutualistes comparés au réseau pH 

bas.  

Les relations mutualistes sont plus fortes quand les pH sont supérieurs à la médiane (Fig.13), avec des espèces 

d’intérêt fromager comme Arthrobacter arilaitensis corrélées positivement avec Planococcus plakortidis et 

Dietzia maris (cor >0.80, p-value < 0.05) 

 

Figure 13 Représentation des corrélations positives des réseaux des logettes sciures en fonction de la 

classe des pH “bas” < 7.92 et “hauts” > 7.92. Les corrélations entre espèces représentées sur cette figure 

sont supérieures ou égales à 0.8. 
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Conclusion  

Cet essai a permis de mettre en évidence la diversité et la richesse microbienne des litières, et surtout 

leurs spécificités plus marquées en fonction du type de logement. Les aires paillées montrent dans cet essai, 

des litières plus sales et plus vieilles que les autres, tandis que les logettes paillées sont particulièrement 

propres. Les richesses et diversité des aires paillées sont relativement plus faibles que les autres systèmes. 

Globalement, 11 espèces majoritaires ressortent parmi tous les systèmes et composent le core microbiome, 

avec une espèce très souvent présente qui est Sporobacter termitidis. La classification des taxons en taxons 

“utiles directement à la fromagerie” et “taxons indésirables” a permis de montrer que les logette tapis et les 

logettes sciures montraient le moins d’espèces d’intérêt fromager, et que les aires paillées montraient le plus 

d’espèces indésirables à la fromagerie. Les pH, pourcentages en matière sèche et température de l’air sont 

spécifiques en système aire paillée, ainsi que les logettes sciures, ces dernières montrant des pH plus faibles 

que dans les autres systèmes. Globalement les pH sont plutôt alcalins, avec un maximum de 8.97. La 

température de l’air et l’humidité de l’air sont corrélées négativement tous systèmes confondus, tout comme 

le pH et le pourcentage de matière sèche, ces derniers ayant une relation négative encore plus marquée. Les 

effets des paramètres abiotiques sur les microbiotes dépendent des systèmes étudiés, avec un effet plus 

important en logette tapis et aires paillées de l’humidité relative de l’air, du pH en logettes paillées, de la 

température de l’air en logettes sciures, du pourcentage de matière sèche en entraves paillées. On retrouve 

cet effet système et paramètres abiotiques également chez les réseaux d’interactions microbiennes. Les 

indicateurs de compétition microbienne sont plus importants pour les sciures avec des pH supérieurs à 7.92. 

La magnitude des corrélations entre taxons et le nombre d’espèces clefs sont également plus importante 

dans les sciures aux pH plus élevés. Les sciures aux pH plus élevés montrent également plus de taxons aux 

espèces d’intérêt fromager, et plus de taxons mutualistes de ces espèces. Cette approche sera détaillée pour 

tous les systèmes dans un futur article scientifique à paraître prochainement. 

 

  



 

Page 17 sur 24 Projet Litières  Action 1.2 

Annexes :  

 

Annexe 1 : Questionnaire agronomique  

 

Méthode de notation de propreté des vaches : Sélection aléatoire de 20% de l’effectif du troupeau puis 

moyenne des trois notations (ci-après)  pour obtenir la note globale de l’animal.  
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